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A solution to the dispersion of small particles suspended in a turbulent fluidispresented, 
based on the approximation proposed by Phythian for the dispersion of fluid points in 
an incompressible random fluid. Motion is considered in a frame moving with the mean 
velocity of the fluid, the forces acting on the particle being taken as gravity and a fluid 
drag assumed linear in the particle velocity relative to that of the fluid. The proba- 
bility distribution of the fluid velocity field in this frame is taken as Gaussian, homo- 
geneous, isotropic, stationary and of zero mean. It is shown that, in the absence of 
gravity, the long-time particle diffusion coefficient is in general greater than that of the 
fluid, approaching with increasing particle relaxation time a value consistent with the 
particle being in an Eulerian frame of reference. The effect of gravity is consistent with 
Yudine’s effect of crossing trajectories, reducing unequally the particle diffusion in 
directions normal to and parallel to the direction of the gravitationa1 field. To charac- 
terize the effect of flow and gravity on particle diffusion it has been found useful to use a 
Froude number defined in terms of the turbulent intensity rather than the mean velo- 
city. Depending upon the value of this number, it is found that the particle integral 
time scale may initially decrease with increasing particle relaxation time though it 
eventually rises and approaches the particle relaxation time. It is finally shown how 
this analysis may be extended to include the extra forces generated by the fluid and 
particle accelerations. 

1. Introduction 
It is widely recognized that the deposition of particulate can present problems in the 

operation of large-scale systems, e.g. deposition from a nuclear-reactor coolant. An 
essential element in that process is the way in which particles are dispersed throughout 
the bulk of the fluid under the action of turbulent forces which are random in both 
space and time. Although such motion for ‘ large ’ particles is stochastically equivalent 
to Brownian motion and as such is well understood, no transport equation has yet been 
rigorously formulated to describe the collective motion of particles over the entire 
range of time scales of the particle-fluid interaction. For the most part gradient 
transport models based on Fick’s law have been used in analogy with both Brownian 
motion and the transport of a passive scalar by a turbulent field. In  the case of the 
latter the experimental and theoretical evidence as to the validity of such models is 
restricted to very simple types of turbulence (Batchelor 1952; Corrsin 1974). Although 
motion of a passive scalar is a special case of ‘real ’ particle motion it illustrates some of 
the inherent problems in obtaining a collective description of their motion. For the 

18 FI.M 82 



530 M .  W .  Reeks 

most part transport of a passive scalar has been formulated in a Eulerian framework, 
where the problem reduces to one of closure of the statistical moment equations central 
to the transport mechanism. Most notable in this respect are Roberts’ (1961) use of 
direct interaction and Saffman’s (1969) and Phythian’s ( 1972) approximations based 
on functional expansions in Gaussian random field variables. In  each method, within 
the limit of the implied closure approximation gradient transport equations are derived 
for isotropic, homogeneous and stationary turbulence for times greater than the time 
scale of the turbulence. 

None of these techniques, however, give an adequate description of ‘real’ particles 
with finite size and finite inertia since they fail to take account of the lack of coincidence 
between the particle and fluid-point trajectories. In  view of the difficulty of this prob- 
lem most authors have assumed the validity of Fick’s law and have calculated the 
particle diffusion coefficient from the basic expression given by Taylor (1921) in his 
theory of ‘diffusion by continuous movements ’, namely that for a stationary homo- 
geneous field the time-varying particle diffusion coefficient c$)(T)  is given by 

@ ( T )  = joT (Aw,(O) Av,(t)) dt, (1 .1)  

where Avj( t )  is the velocity of the particle in t h e j  direction at time t relative to its mean 
and the angle brackets indicate an ensemble average over all realizations of the particle 
motion. In  this respect we refer specifically to the work of Tchen (1947), Friedlander 
(1957), Peskin (1962), Csanady (1963), Hutchinson, Hewitt & Dukler (1971) and Meek 
& Jones (1973). Although Taylor’s theory circumvents closure, as is well known, the 
relevant statistical correlations are those obtained along a particle trajectory for all 
realizations of the particle motion (Lagrangian) and the essential problem of non- 
linearity is made manifest in finding a relationship between Lagrangian variables and 
those of the field at a stationary point (Eulerian). Tchen’s analysis used an equation of 
motion which was consistent with a particle accelerating through a viscous time- 
varying fluid field in which the particle Reynolds number was small compared with 
unity (Hinze 1959). The significant feature of this analysis was that in the long-time 
limit equation (1.1) was identical to 

€$y(co) = IOrn ( W O )  Au,(t))  dt, (1.2) 

where Au,(t) is the equivalent fluctuation in the fluid velocity relative to its mean at a 
point instantaneously occupied by the particle at time t for a particular realization of 
the particle’s motion. Tchen, however, identified (Au,(O) Au,( t ) )  with the Lagrangian 
velocity correlation of the fluid itself and concluded that the particle and fluid diffusion 
coefficients were equal in the limit when both became time independent. This correla- 
tion function is clearly dependent upon particle motion, reflecting in general a depend- 
ence upon particle inertia, made manifest in an inability to follow the fluid oscillations, 
and also upon the effect of any external force acting upon the particle. For this reason, 
we shall hereafter refer to (Au,(O) Auj(t)) as U$)(t) ,  where the superscript p symbolizes 
the dependence on particle motion. The effect of a constant external force was first 
recognized by Yudine (1959) and later used by Csanady (1963) in his analysis of the 
turbulent diffusion of heavy particles in the atmosphere. Here the particle inertia was 
considered sufficiently small for a particle to follow the fluid oscillations but the par- 
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ticle was considered sufficiently heavy for its gravitational drift significantly to affect 
its velocity correlation compared with that of the fluid. If Rij(x,  t )  is the fluid Eulerian 
space-time velocity autocorrelation in a frame of reference moving with the fluid mean 
velocity (in future, Eulerian will always imply such a frame of reference)., then the 
effect of a constant drift velocity vg on particle diffusion is seen by replacing U$y)(t) in 
(1.2) by Rij(vgt,  0). Yudine has referred to this phenomenon as the ‘effect of crossing 
trajectories’. It is clear that such an effect will entirely dominate particle diffusion at  
arbitrarily large vg when the time scale associated with RSj(vgt ,  0) can be made arbi- 
trarily small compared with the eddy decay time. For zero vg, U\$)(t) reverts to the 
Lagrangian fluid-point correlation in Csanady ’s system. On this basis, Csanady 
describes the behaviour of Uiy)(t)  in the vertical direction due to eddy decay and crossing 
trajectories by the two numbers vo t l l ,  and vg t / l l  respectively, where vo is the intensity 
of the turbulence and I ,  the vertical integral length scale. By choosing a functional 
form for U&) consistent with similar shapes for Eulerian spatial and Lagrangian fluid- 
point correlations, Csanady obtains a formula for @)(00) of the form 

where the superscript f refers to the fluid and r is the ratio of the product of the La- 
grangian integral time scale and vo to 1,. Using similar arguments Csanady also obtains 
a formula for the particle diffusion coefficient in the horizontal direction. Here, how- 
ever, because of continuity of flow, the Eulerian length scale is different from the 
equivalent vertical scale. The relationship of scales existing in isotropic stationary 
turbulence is assumed and the form for e&)(00) suggested by Csanady is 

€‘zp2’(0O) = dqm) (4 (;)2 +4-+ 
Both formulae are presented here as a ba.sis for future comparison. Clearly the effect of 
increasing vg is to reduce the particle diffusion coefficient both in the direction parallel 
and in the direction normal to vQ. In the limit vg/vo + 00, the diffusion coefficient normal 
to  vg is a half that parallel to vg, both coefficients being inversely proportional to vD, a 
result first obtained by Yudine (1959). It is worth pointing out that (1.1) was used as the 
basis of Csanady’s analysis, and because of neglect of inertia effects (Av,(O) Avj(t)) was 
equivalent to U$)(t) .  However, because of the validity of (1.2) for linear drag, in the 
limit of large vg the same results would apply for particles for which inertia effects 
were significant (Lumley 1976). However, in the absence of a constant drift these 
formulae are no longer valid except in the limit of zero inertia. It is reasonable to 
suppose that the effect of inertia in this instance is such that as the particle inertia is 
increased from zero U g ) ( t )  changes smoothly from the fluid Lagrangian autocorrelation 
to the single-point Eulerian velocity-time correlation. Whether, on the basis of (1 4 ,  
the long-time particle diffusion coefficient is, in general, greater or less than that of the 
fluid clearly depends upon whether for the fluid the Eulerian integral time scale is 
greater or less than the Lagrangian integral time scale. The most notable theoretical 
work on this subject began with Corrsin’s (1959) independence approximation, known 
as Corrsin’s hypothesis, but latterly has consisted of the more convincing work of 
Kraichnan. Kraichnan (1964) has described Eulerian and Lagrangian velocity fields 
in which one would intuitively expect Lagrangian time scales to be less than the 
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equivalent Eulerian time scales. This conclusion is corroborated by his computer 
simulations of fluid-point dispersion in a Gaussian random velocity field (Kraich- 
nan 1970). It was also significant that good agreement was found between these ‘exact ’ 
results and those obtained from the direct-interaction approximation. This Eulerian- 
Lagrangian time-scale relationship is also an implication of Phythian’s ( 1975) formula- 
tion. Phythian’s method uses a ‘second approximation ’ to the solution of the equation 
of motion of a fluid point moving through a random isotropic homogeneous and 
stationary Gaussian velocity field. Considering the crudity of the approximation 
compared with the ‘fully iterated’ solution, it will appear surprising that, as far as the 
finally calculated fluid Lagrangian velocity autocorrelation is concerned, the results 
are in remarkably good agreement with Kraichnan’s computer simulations for random 
velocity fields characteristic of real turbulence. As a basis for calculating random 
particle motion with finite inertia, it will be apparent in the next section that this 
approximation is strictly a perturbation about the motion of particles of large inertia. 
We should therefore expect the greatest discrepancy between real and approximated 
motion to occur in calculating fluid-point motion, for which the method was originally 
used. A comparison of Phythian’s results and those from Kraichnan’s numerical 
simulation over a range of Gaussian velocity fields indicates that the approximation 
is exact for velocity fields with b-function correlation times, becoming progressively 
worse as one approaches both infinite Eulerian correlation times and b-function energy 
spectra. Even in this extreme case, the difference is significant only in the negative 
region of the Lagrangian correlation function. That the agreement is not fortuitous is 
supported by the recent work of Lundgren & Pointin (1976)’ who have demonstrated 
a close relationship between Phythian’s method and that of an approximation based 
on Corrsin’s hypothesis. They have used this approximation to evaluate the same 
dispersion coefficients in the same random velocity fields as those chosen by Kraichnan 
and find exactly the same trend of agreement as that of Phythian. More significant 
here is that in all four Gaussian velocity fields considered their solution and those of 
Phythian differ by only a few per cent. Their value for the diffusion coefficient is 
obtained from a second-order differential equation in time for the fluid-point mean- 
square displacement, for which a solution by iteration is found to be rapidly conver- 
gent. Iterating the equation twice gives the function obtained from Phythian’s 
approximation. This, in itself, is a remarkable result since it is not obvious that these 
approximations bear any formal resemblance to one another. Furthermore, Corrsin’s 
hypothesis is clearly a less crude assumption than has previously been thought. 
Lundgren & Pointin suggest that in Gaussian fields such an assumption is acceptable 
in situations where the displacement of a fluid point is only weakly coupled to any 
one Fourier mode of the field. Certainly, this appears consistent with the error trend of 
the approximation when applied to the various random fields considered by Kraichnan. 
More recently, Weinstock (1976) has examined the strength of the approximation in 
arbitrary random velocity fields, deriving conditions of suitability involving third- 
order spatial correlations that seem well satisfied in homogenous turbulence. 

It is the purpose of the analysis below to apply Phythian’s technique to calculate 
U @ t )  and some important particle dispersion coefficients derivable from it for the 
case of particle dispersion in isotropic homogeneous and stationary turbulence. The 
analysis will incorporate both the simultaneous effects of finite particle inertia and 
crossing trajectories due to the action of a constant external gravitational force. The 
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essential difference between this analysis and that of Csanady and others is that we 
shall consider particle dispersion in the absence of constant drift. Though the extra- 
polation to zero particle inertia may not appear formally justified within the spirit of 
the approximation, we believe that it is permissible for two reasons; first, we shall be 
applying it to a system where the approximation for fluid-point motion gives good 
agreement with results from a numerical simulation, and second, in a more general 
sense, the end results will be closely related to those obtained from an approximation 
based on Corrsin’s hypothesis, which has been shown to be applicable in homogeneous 
turbulence. In  the absence of a general transport equation it is assumed on the basis of 
the evidence for both passive-scalar and heavy-particle motion in such turbulence 
that Pick’s law is operative throughout the entire range of particle inertia, and thus 
that the particle diffusion coefficient uniquely determines the temporal evolution of 
the particle concentration. The analysis is consistent with the relationship between 
Lagrangian and Eulerian correlation times formulated by Kraichnan and Phythian. 
In the absence of external forces it is to be expected, therefore, that in the long-time 
limit the particle diffusion coefficient will be greater than that of the fluid. This differs 
significantly from the earlier work of Tchen (1947) and Peskin (1962), where the long- 
time particle diffusion coefficient was either the same as (Tchen) or less than (Peskin) 
that of the fluid. 

2. Analysis 
Several assumptions are made on the grounds of mathematical simplicity. The drag 

force acting upon a particle as it moves through the fluid is assumed to be linear in its 
velocity relative to that of the fluid at the same point and time. The particles are con- 
sidered sufficiently large that Brownian diffusion can be neglected in comparison with 
the transport originating in the interaction of the particle with the turbulent velocity 
field. The fluid is endowed with a constant mean flow, the turbulent fluctuations super- 
imposed upon this flow being considered isotropic, stationary and homogeneous 
throughout a frame of reference moving with the mean velocity. 

The assumption of linear drag is strictly applicable only to uniform particle motion 
for which the particle Reynolds number is less than unity. (For a more general equation 
of motion in turbulence and the restrictions which apply see Hinze 1959.) We have thus 
implicitly assumed that, in the statistical correlations we wish to calculate, the linear 
drag is dominant over those drag forces arising from the particles’ acceleration, e.g. the 
Basset history force. This is not such an implausible assumption. Although such 
‘acceleration’ forces are significant in a particle’s transient response to fluid flow, it has 
been shown that in a statistically stationary response (such as is desired when calculat- 
ing turbulent dispersion) the effect of the Basset force can be neglected (Ahmadi & 
Goldschmidt 1971). In  any case for particle Reynolds numbers less than unity the 
analysis is capable of including such forces and we shall discuss this at a later stage. For 
unrestricted motion the functional dependence of the drag force on particle and fluid 
variables is extremely complicated though under appropriate restrictions it can be 
linearized and approximated by the quasi-steady form assumed here (Lumley 1957). 
In parentheses, we may plausibly argue that, for the statistical quantities we wish to 
calculate, the dominant contributicn is from the particle’s responee to the large scales 
of fluid motion, for which the linear drag is asymptotically correct. 
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We thus consider the motion of a particle throughout such a turbulent field in a 
frame of reference moving with the mean velocity of the flow. The fluid velocity is 
specified by a Eulerian velocity field u(x, t ) ,  where (x, t )  are the space-time co-ordinates 
of the field. In  general, the particle may also be acted upon by some external force 
field, which we shall characterize by a particle acceleration f,(x, t ) .  Thus if v(t) is the 
velocity of a particle at  time t ,  then the equation of motion of the particle is 

+(t )  +pv(t) = Bu(x(t), t )  + fe(x(t), t ) ,  (2.1) 

where /3 is a constant for the motion (p-' is referred to hereafter &s the particle relaxa- 
tion time and quantifies its inertia) and X(t) is the position of the particle in the field at 
time t ,  which is explicitly given by 

X(t) = / 3 ) d 7 ,  (2.2) 

where without loss of generality the position of the particle at  time zero is taken to be 
the origin of the field co-ordinatea. In  this analysis we assume that the only external 
force acting on the particle is gravity, so that fe is constant and identical to g, the 
acceleration due to gravity. Equations (2.1) and (2.2) constitute a set of nonlinear 
equations in vi for which there is in general no analytic solution. The stochastic nature 
of the problem is reflected in the vector u(x, t ) .  Knowledge of the particle dispersion in 
this field would require a general solution to this set of equations for any realization of 
the fluid velocity field u(x, t )  together with its statistical description. It seems natural 
to represent the statistical nature of this field by either a probability density functional 
P[u(x, t ) ]  or its associated characteristic functional (exp [il +(x, t )  . u(x, t )  dxdt]). 
Complete knowledge of either of these quantities implies a solution to the closure 
problem of turbulence, for which no entirely satisfactory solution exists as yet. In  the 
absence of a method for deriving the complete nature of P[u(x, t ) ]  from the moment 
equations of turbulence, it is assumed, as in Phythian's formulation, that the prob- 
abilitiy distribution for u(x, t )  is Gaussian. Although lacking certain important features 
of real turbulent flow, namely nonlinear energy transfer and the passive convection of 
small spatial scales of motion by larger ones, this distribution appears to represent 
quite well the statistics of large scales of motion, to which the fluid dispersions referred 
to below are more sensitive (Frenkiel & Klebanoff 1967a, b )  and indeed to which par- 
ticle dispersion, in general, will be doubly more sensitive because of the built-in 
selective response to low frequency fluctuations. 

In  the situation considered here, a particle is allowed to come to equilibrium with 
the fluid so that the particle motion has lost all memory of its initial conditions. All 
subsequent evolution of the correlated motion of the particle will be independent of 
whatever time axis is chosen to describe the process. The state of motion of the particle 
in this instance can be conveniently represented by 

v(t) = p / '  u(x(7), 7 )  e ~ T - s d 7  + vg, (2.3) 
- -m 

where v8 = g/p is commonly referred to as the settling velocity. A solution to this 
equation may be obtained by generating a chain of approximants for u(X(7), 7) based 
on an initial approximation X(O)(7) for X(7). The first approximant for u(X(t),7) is 
simply 

U y 7 )  = U(X(O)(7), 7), (2.4) 
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so that the first approximant for X(t), obtained from (2.3) with u(’)(T) for u(X(7), T ) ,  is 
thus 

where 
xyt) = v,t+ Ju(X(~)(7),7){~(7-t)$(7--t)-@(7)$(7))d7, (2.5) 

In  this equation, as in future equations where the range of integration is not indicated 
explicitly, it is assumed to be over the entire space of the variable. 

The second approximant for ~ ( X ( T ) , T )  is generated by setting X(7) = X(~)(T); 
explicitly 

u(,)(T) = u(v,7+ I~T’u(X(~)(T’),T’) {O(T’-T)  $(7’--7)-  @(T ’ )  $(T’ ) ) ,T)  (2.7) 

and hence 

X(z)(t) = vgt + J u ( v , ~  + J~T’u(x(o) (T~) ,  7 ’ )  {o(T‘ - 7 )  $(T’ - 7 )  - o(T’) +(T‘)} ,  7 )  

x {O(T - t ’ )  $(T - t)  - O(7) $ ( 7 ) ) d ~  (2.8) 

and so on, so that, in general, the nth approximants for U ( ~ ) ( T )  and Xn(t) are simply 

U q 7 )  = u(X(n-1’(7), 7 ) ,  (2.9) 

(2.10) X(n)( t )  = v, t + J U y 7 )  {O(7 - t) +(7 - t )  - O(7) $(7)} d7. 

The state of motion of the particle implies that the particle kinematic variables are 
stationary random variables. Comparison of the left-hand with the right-hand side in 
(2.1) with f, = g implies that u(X(t), t) is also stationary and random. Returning to 
(2.3), it is obvious therefore that 

Consider thus the correlation (Av,(tl) Avj(t2)) of particle velocity fluctuations Av 
relative to v,, i.e. Av(t) = v(t) - v,. From (2.3), 

= vg‘ (2.11) 

(A%(ti) Avj(tz)) = b2exP [-P(ti + t z ) l  1” 1” exP [P(71 +%)I 
- m  - w  

x (udX(71), 71) ujXX(72),72))d71d~2. (2.12) 

Because of stationarity (U,(X(T~), T ~ )  Uj(x(72), T ~ ) )  is a function of only T~ - 7 2  in time 
and there will be no loss of generality if we replace it by 

(uAO, 0) ~j(X(71-72),71-72)) 

in (2.11). This procedure may seem trivial a t  this stage, but when we eventually 
replace (u,(O, 0 )  U ~ ( X ( T ~  - T ~ ) ,  T~ - 7 2 ) )  by an approximation, it ensures that the expres- 
sion for (Avi(tl) Avj(t2)) is a function only of t, - t, in time, consistent with the real 
(Av,(tl) Avj(t2)). It is easily shown that 

( A w l )  Av,(t,)) = ~t{W+ t1- t z )  exp [8(5 + t1- t2)I + fx - t l  + t z )  

x exPrP(t;-tl+tz)I)(Ui.(O, O)Uj(X(t)*t)), (2.13) 
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which is consistent with the initial assumption that the correlated motion of the par- 
ticle is independent of the time axis. (u,(O, 0) uj(X(E), E)) is readily identified with the 
quantity U$)(E), defined in (1.2). On the basis of Phythian’s calculations, we consider 
(u,(O, 0) u)”)(t)) to be a sufficiently good approximation to (ui(O, 0) u j ( X ( t ) ,  1 ) ) .  In  this 
instance our initial approximation for X(t) is X(O)(t) = vQt, so that explicitly 

(ui( 0,O) @)(t ) )  = I dx (wi( 0 , O )  u,(x, t )  S(x - vg t - I d~ u(vg 7,7)  q( t ,  7 ) ) )  (2.14) 

x exp (-ik.Sd7U(vg7,7)q(t,7))), (2.15) 

where, for convenience, we have used q(t ,  7 )  for O(T - t )  $ (T -  t )  - O(T) $(T) .  We note 
here that the approximation (ui(o,O) d;) ( t ) )  forms the basis of the approximation 
used by Csanady, Yudine and Meek, in which the particle propagator in (2.14) is 
simply S(x - vQ t )  and thus is restricted to heavy particles for which vg greatly exceeds 
the intensity of the turbulence. 

On the basis that the distribution of u(x, t )  is Gaussian with zero mean, we write the 
characteristic functional 

M[gb(Y,7)1 = (exp[iJdYSd7+(Y,7).U(Y17)1) 
explicitly as 

where Rij is the correlation function of the fluid velocity field, defined by 

(u~(x,~)u~(x’, t ’ ) )  = R,j(~-~’ , t - t ’ ) .  (2.17) 

If we assume that Ri, is separable in x and t ,  then in isotropic, homogeneous and 
stationary turbulence Rij is constrained to the form 

(2.18) 

with 

D(0)  = 1, dkE(k)  = 8.;. 
s o m  

The ensemble average contained within the integrand of (2.14) is formally 

-- s2 
Wgb; 0, 0, x, tl, 

W j  
with 

+(Y, 7 )  = - kdt, 7 )  S(Y - VQ 7). (2.19) 

Explicitly evaluating this expectation value using the expression given for a Gaus- 
sian characteristic functional and employing the incompressibility condition yields the 
following expression for (ui(O, 0) uy)(t)): 

(u,(O, O ) U $ Y t ) )  = J”dkQ,j(k,t)exp (-akikjSSdTld72q(t,71) Qij(o,71-72)~(t,72)), 
(2.20) 

where 
&ij(x, t )  = Rij(vgt + X, t ) .  
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Employing the expression for q(t, 7) and reducing gives finally 

where 
(U,(O, O)u;(t)> = J-dkc!ij(k,t) exp ( - k i k p * j ( t , P ) ) >  (2.21) 

(2.22) 
!Om 

1 1 P 
1 

a&, P )  = /: [1- E + sinhP(6 - t )  Qij(O, 6) d6 + - [coshpt - 11 e-FtQij(O, E )  dg. 

The inertial dependence of ( u i ( O , O )  u$2)(t)) is simply reflected in the behaviour of 
aij(t, P) .  As P-+ 0 (high inertia), aij(t, P )  -+ 0, i.e. the particle is forced into a Euleriaia 
framework moving with a velocity vu relative to the zero-mean-velocity frame of 
reference. At the other extreme, /-+GO (particle motion equivalent to fluid motion), 
vu = 0 and 

%(t,  P )  -+ vt 1; { t  - 61 D(E) df;, 

giving a form for (ui(O,O) u$.”‘(t)) which is identical to Phythian’s expression for a fluid 
particle. Note also that only in the extreme case when particle and fluid-point motion 
are equivalent is the dispersion isotropic. Furthermore, if we were to ignore the effect 
of gravity, the time scale associated with (u,(O, 0) uj”)(t)) for any P would be less than 
that for (u,(O, 0) ui2)(t)) when P = 0. Thus the qualitative features of (u,(O, 0) ui2)(t)) 
appear to be consistent with the remarks made in the previous section. 

3. Evaluation of dispersion coefficients for assumed E(k)  and D(t )  
From the results of the previous section some important statistical quantities 

associated with the collectivc particle motion are evaluated using a Gaussian for D(t) ,  

(3.1) namely 1 2 t 2  D( t )  = exp ( -  2% 1, 
and a form for E(k)  identicaI with that used by Phythian for which he obtains excellent 
agreement with Kraichnan’s numerical results, namely 

E(k)  = 16(2/n)h~~k,~k~exp ( -  2k2/k3 .  (3.2) 
The form of E(k)  is consistent with k being distributed isotropically in k space on the 
surface of a sphere of radius k,, the occurrence of each component of k being deter- 
mined by a Gaussian distribution of standard deviation sk ,  (Kraichnan 1970). It is not 
expected that a universal or even a simple form exists for the energy spectrum of real 
isotropic turbulence. The form for E ( k )  used here is asymptotically correct at  low wave- 
numbers but is in serious error at  high wavenumbers. However, the quantities con- 
sidered here tend to be dominated by the large scales of motion, especially at  large 
times, so that the precise form of E(k)  at high wavenumbers ought to be relatively 
unimportant. The choice of D(t )  is somewhat arbitrary: on dimensionless grounds w, 
is a function of k,  v,. For the purpose of some of his calculations, Kraichnan arbitrarily 
sets w, = kovo; in this analysis we assume a constant of proportion y, i.e. 

CL), = ykoeo. (3.3) 

We do this because it ought to be possible to ascribe some kind of value to y from 
experimental measurements. 

For convenience of presentation, the following dimensionless parameters are used : 

7 = k,v,t, A, = vu/v0, /? = P’/kovo, (3.4) 
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where p' is identical to the P defined in (2.1), and 

pfi j  = 1 +*k:aij(t,P)* (3.5) 
It is natural to let vg define the i = 1 axis, so that [i = 1,2,3] forms a set of principal 
axes. In  this instance 

(3.6) 

(3.7) 

I Qll(0,d = v:exp ( -  &+), 
Q 2 2 ( 0 , 7 )  = & 3 3 ( 0 , 7 )  = V a l -  +A; 7 2 )  exp ( - &c++"), 
&ij(O,T) = 0, i =I= j ,  

u 2  = y2+ &A;. 
where 

Using the adopted forms for E(k)  and D(t) and with reference to the function 

the pi* are explicitly given by 

h(7) = f(7) +f( - 7) - 2fW. 
For convenience, we redefine U$?)(T) = (u,(O, 0) U?)(T)), so that in this instance 

(3.10) 

U p ( 7 )  = 0, i *j. I 
The particle velocity correlation function and diffusion coefficient are both derivable 
from U$)(T). The particle velocity correlation function (Avi(0) Avj(7)) is simply 

(Avi(0)Avj(~) )  = d[e-lt{U$"([+7)+ U $ ? ) ( ~ - T ) } ,  (3.11) 

from which the mean-square velocity of the part,icle 

The diffusion coefficient @ ( T )  is similarly 

(3.12) 

(3.13) 
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Dimensionless time, T 

FIGURE 1.  Fluid velocity autocorrelation U(')(T) along a particle trajectory; y = 1, l/Fa = 0. 

7 

FIGURE 2. Particle diffusion coefficient @ ( T ) ;  y = 1, l /Fa = 0. 

which when r --f 00 degenerates to 

(3.14) 

The particle integral time scale T$) associated with (Av,(O) Av~(T)) is clearly given by 

(3.15) 
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Y 
FIGUFCB 3. Ratio of long-time particle and fluid diffusion coefficients @(co)/s(fl(co) as a function 
of y,  the ratio of the eddy circulation time to the Eulerian velocity-field correlation time; 
lpn = 0. 

3 

FIGURE 4. Particle mean-square velocity relative to mean based on Eulerian and Lagrangian 
time scales; y = 1, i/Fn = 0. 

To account for the dependence of Ag on p, we define a number Fg = k, vf/g, so that 

A, = [-I",B]-? (3.16) 

Fg is akin to the Froude number, but is defined here in terms of a lengt,h scale and inten- 
sity of the turbulence, rather t'han the mean velocity and equivalent diameter of the 
flow. For illustrative purposes and for direct comparison with Phythian's calculations 
on fluid-point dispersion, the quantities referred to above have been evaluated for the 
arbitrary case of y = 1, unless otherwise stated. The simplest and most interesting 
case, considered first, is particle dispersion in an isotropic turbulent fluid where the 
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0 1 .o 2.0 3.0 

Dimensionless time, T 

FIQURE 5. Particle velocity autocorrelation (Aw(0) Aw(7)); y = 1, l/Fg = 0. 

effect of gravity can be ignored (l /Fg N 0). In  this instance, the dispersion is totally 
isotropic, the indices i a n d j  becoming superfluous to the process. The effect of increas- 
ing particle relaxation time on U@)(T) (figure 1) is to force the particle more and more 
int,o an Eulerian frame of reference, so that as time increases the particle diffusion 
coefficient E'p'(7) eventually reaches a value which is consistently higher than the 
equivalent long-time fluid-point diffusion coefficient &)(a) (figure 2). For any given 
p-1, the ratio &)(co)/df)(co) exhibits a maximum as a function of y (figure 3), approach- 
ing unity as y + 0 (frozen Eulerian field) and as y -+ 00. In  the latter limit the Eulerian 
and Lagrangian fields are coincident, the process is Markovian and the difference is 
zero (equivalent to the motion of molecules in a gas). In  thisinstance the approximation 
we have used is asymptotically exact. Figure 4 shows curves of particle mean-square 
velocity as a function of particle relaxation time obtained by using a Lagrangian 
description of U ( ~ ) ( T )  [equations (4. lo)] and also by treating U(P'(7) as the single-point 
Eulerian velocity correlation viO(7). In  the limits of /3-' approaching zero and infinity 
the curves are coincident,. The curves of the particle correlation function for various 
particle relaxation times (figure 5) are consistent with the notion of the persistence of 
particle velocity with increasing relaxation time. The remaining figures illustrate the 
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Dimensionless relaxation time. b - '  

effect of crossing trajectories on the system. Here, with increasing particle relaxation 
time, U!3)(7) approaches the Eulerian covariance &(O, 7 )  consistent with the particle 
travelling with a velocity vo relative to the zero-mean-velocity frame of reference. In 
this instance, U@(7)  is consistently less than U$T)(7), such that in the limit A. -+ 00 the 
integral time scales associated with U @ ( 7 )  and U @ ( 7 )  are in the ratio 1 : 2, the ratio of 
the lateral and longitudinal macroscales of the turbulence. It is clear that in this limit 

~@(co)/&)(co) = (Av~)/(Av;) = 0.5, (3.17) 

a result in agreement with that of Yudine and Csanady; see (1.3) and (1.4). The in- 
crease in s$)(co) with increasing relaxation time is observable only for large .&, over a 
restricted range of P-l, and the coefficient finally declines as A. becomes dominant 
(figure 6). For comparison, we have also shown the values of eI1(m) obtained from (1.3) 
(Csanady), using the value of T relevant to this system: explicitly, 

(3.18) 

The values of e ~ ~ ) ( 0 0 )  obtained from this formula are always consistently less than the 
equivalent values obtained from aur theory, reflecting the fact that the diffusion 
coefficient is greater than that for the fluid for A" = 0. Our theory and that of Csanady 
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FIQURE 7. Particle mean-square velocity (Av, Av,); y = 1. -, ( A V , ) ~ ;  ---, ( A V , ) ~ .  

give identical values for @(co) at infinite A,. Similarly,-the value of I$ has a marked 
effect on the dependence of (Aw;) 0nP-l (figure 7). Most interesting of all is the effect of 
I$ on the particle time scale 73) (figure 8). In  situations in which the Eulerian frame of 
reference remains fixed and independent of P-l, we should expect 7 2 )  to be monotoni- 
cally increasing with increasing particle relaxation time. But in situations where F, is 
not infinite, 7%) initially declines from its value when P-’ = 0 to a minimum value 
dependent upon the strength of I$. Within this range the decline of 72’ is indicative of 
the fractional rate of decline of (Avi Aw,) being less than that of the time scale associated 
with U$)(7) [equation (3.15)]. The effect is more pronounced in the direction normal to 
vg, increasing as F, is reduced. It is significant that this effect has been observed in 
measurements of the particle velocity correlation (Aw2(0) Aw2(t)) in grid-generated 
turbulence (Snyder & Lumley 1971). Although the turbulence generated in this 
experiment was homogeneous and very nearly isotropic, it was not, however, station- 
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Dimensionlesslrelaxation time, p-’ 
FIQURE 8. Particle integral time scale 7%); y = 1. -, TF;  ---, T ~ T .  

ary in real time and it is therefore not stricty valid to compare in detail t.his theory with 
Snyder & Lumley’s experimental data. It is, however, interesting to note that Fg 
computed from their experimental data corresponds roughly to the case FB = 0-1 con- 
sidered in figure 8. The range of particle sizes used in the experiment corresponded to a 
rangeof /3-l where the 7@curve shows a significant decline. Snyder & Lumley, however, 
seem to suggest that 4%) would continue to fall as the particle size was increased, 
asymptotically approaching zero. This is not, however, consistent with this formula- 
tion. Beyond the minimum the particle time scale 7%) increases monotonically, 
asymptotically approaching the particle relaxation time. In  this instance, the particle 
is totally insensitive to fluid velocity fluctuations and the particle motion is dynami- 
cally equivalent to that of a particle moving in a quiescent viscous fluid. 

4. Summary and conclusions 
The analysis presented above gives a technique for calculating the effect of both 

crossing trajectories and particle inertia on the dispersion of particles in isotropic, 
homogeneous and stationary turbulence when the particle-fluid drag is assumed 
linear and in the presence of gravity or any other constant external force. The results 
indicate that, in the absence of gravity, the asymptotic particle diflusion coefficient is 
in general greater than that for the fluid.t Only when gravity and other external forces 
are imposed can this effect be reversed, the effect of gravity on crossing trajectories 
becoming significant when the particle settling velocity is greater than the turbulent 
intensity. 

t This result is consistent with a very recent analysis of Pismen & Nir (1978) based on Corrsin’s 
h ypot he& R . 
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We mention briefly that there is experimental evidence for an effective long-time 
particle diffusion coefficient greater than that of the fluid, the effect increasing with 
particle relaxation time. We specifically refer to the work of Goldschmidt & House- 
holder (1969) and Lilly (1973) in jets and pipes. It is believed here, however, that these 
results must be viewed with some caution because of the way results were obtained, 
being based on measurements of particle concentration gradients and on the assump- 
tion that a gradient-transport model was a valid description. Although such an 
assumption may be valid for the type of system we have been discussing, it is not 
obvious that it will be valid in turbulent shear flow (Corrsin 1975), and the results 
may only be meaningful in the way the measurements have been performed. 

Though we have not, done so here, for a particle Reynolds number less than unity the 
analysis may be readily extended to include the extra forces generated by the particle's 
acceleration. Tchen ha,s shown that (1.2) is still valid. We recognize that the aij 
appearing in the equation 

[equation (2.2 l)] is simply half the particle mean-square displacement calculated on 
the basis of Qii(O, () for U$)([) and a linear drag law. It is found that this expression is 
still valid when the extra 'acceleration ' forces are included: ai, is still based on Q i j ( O ,  E ) ,  
but is clearly different from its value in (2.22). 

In  conclusion we emphasize that the situation that has been analysed is to some 
extent an idealized one. Isotropic turbulence and linear drag were assumed strictly for 
mathematical simplicity though plausible conjectures were made as to the reality of 
the latter. It would be advantageous to perform a numerical simulation of particle 
motion similar to Kraichnan's calculations for fluid-point dispersion, and to compare 
the results with those of this theory. 

I am very grateful to Dr R. Phythian of the Physics Department of University 
College Swansea for the helpful discussions we have had concerning the formulation 
of this work, whi'ch is published by permission of the C.E.G.B. 
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